
Week 7 - Monday

 What did we talk about last time?
 File example
 while loops

 What if we want to find the largest integer that is less than or
equal to the square root of another integer?

 Sure, we could use the math.sqrt() function and then
convert to an integer

 But we could also loop through different integer values until
we find the right one

 We'll need a while loop since it's not clear how many steps
we'll take

 Start our counter at 1
 As long as the counter squared is less than or equal to the

number we're trying to square root
 Increase it by 1

 Give back an answer one less than the counter, since we
overshot by 1

def squareRoot(n):

 We can write some Python that will guess what number we're
thinking of between 1 and 100

 Each time the program guesses a number, we will answer:
 H If the number it guessed is too high
 L If the number it guessed is too low
 F If it found our number

 We have to use a while loop for this problem, since we have
no way of knowing how many guesses it will take

 Make a variable holding the start of the range (1)
 Make a variable holding the end of the range (100)
 As long as the number hasn't been guessed:
 Find the number in the middle of the range (by averaging the

minimum and the maximum)
 Ask the user if the number is right
 If the number is too high, change the end of the range to the middle
 If the number is too low, change the start of the range to the middle

 What if we wanted a list with:
 A bunch of perfect squares in it
 A bunch of perfect squares of odd numbers
 Any set of values that we could compute with a short loop

 We could create an empty list and add such things with a loop
 But Python has a tool called a list comprehension that lets

you put the loop inside the list, generating the values all in
one line

 Code we already know using append():

 List comprehension version:

values = []
for i in range(10):
values.append(i**2)

values = [i**2 for i in range(10)]

 Code we already know using append():

 List comprehension version:

values = []
for i in range(10):
if i % 2 == 1:

values.append(i**2)

values = [i**2 for i in range(10) if i % 2 == 1]

 A list comprehension looks like:

 The expression part is any single Python expression that
generates a value (and usually involves your iterating variable)

 You can use any variable, i here is just an example
 The iterable is anything a for loop can loop over, like a

string, another list, or a range() function
 The if condition part is optional

[expression for i in iterable if condition]

 Given a list with all the planets' names, write a list
comprehension that puts only those names whose length is
shorter than 6 into a new list

 List comprehensions are never necessary
 You can always build a list by appending
 However, list comprehensions can be faster because of

internal mechanisms in Python
 They only take a line to write instead of three or four
 Python people love them, so you'll see them quite a bit in

other people's code

 Have you heard of the Internet?
 It's got a lot of data on it
 All that data is sitting on computers somewhere
 We often use a URL to give the location of files and other

resources on the Internet
 It's possible to open a file remotely if you know its URL

 URL is an abbreviation for Uniform Resource Locator
 Format: protocol host resource parameters
 http://faculty.otterbein.edu/wittman1/comp1800/
 https://www.youtube.com/watch?v=GQf25_9NOts

 Hosts are often given as domains
 Top-level domain: edu
 Second-level domain: otterbein
 Subdomain: faculty

 JSON is an industry standard data structure for transmitting
data across network connections

 It uses dictionaries and lists to create hierarchical and
structured repositories of data that can be accessed
programmatically

 JSON data itself is always a string
 Example JSON data:

'{"artist":"Led Zeppelin", "name":"Stairway to Heaven",
"length":"7:55", "year":1971}'

 To open a file from the Internet with a URL called url:

 Then, you can read from it like you would read another file
 To turn a JSON file with a URL called url into a Python object:

import urllib.request
file = urllib.request.urlopen(url)

import json
import urllib.request
file = urllib.request.urlopen(url)
string = file.read() # reads entire file into a single string
data = json.loads(string) # turns JSON string into Python

 We can get a lot of earthquake data stored in a JSON file:

import json
import urllib.request
url =
'https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/4.
5_month.geojson'

file = urllib.request.urlopen(url)
string = file.read() # reads file into a string
data = json.loads(string) # turns JSON string into Python
features = data['features'] # get list of features
for feature in features:

properties = feature['properties'] # get all properties
magnitude = properties['mag'] # get magnitude
print (magnitude)

 Image processing
 Read sections 6.2 and 6.3

 Read sections 6.2 and 6.3
 Keep working on Assignment 5
 Due next Friday before midnight

	COMP 1800
	Last time
	Questions?
	Assignment 5
	while examples
	Integer square root
	Integer square root algorithm
	Guessing game
	Algorithm for guessing game
	List Comprehensions
	List comprehensions
	A list comprehension for 10 perfect squares
	A list comprehension for perfect squares of odd numbers
	List comprehension syntax
	Example
	Reflections on list comprehensions
	Reading Data from the Internet
	Internet data
	URL
	JSON (JavaScript Object Notation)
	Libraries for remotely opening files
	Earthquake example
	Upcoming
	Next time…
	Reminders

